Using Emission Inventories for Air Quality Modeling

Joe Touma
U. S. EPA
Office of air Quality Planning & Standards
(OAQPS)
Research Triangle Park, NC
Touma.joe@epa.gov

Emission Inventories

The inventory is a fundamental building block in developing an air quality control and maintenance strategy

Typical Uses of Emission Inventories

- Identify sources and general emission levels
- Input for air quality modeling
- Useful for looking at trends over time
- Required to demonstrate goals are being met
- Trading programs

Preparing an Inventory for Air Quality Modeling: "Emission Processing"

- Typically, air quality models need detailed emission data inputs
- Inventory preparers work with modelers to understand what they need and ensure they know the limitations of the inventory
- Inventory preparers & AQ modelers use emissions processing tools to prepare the inventory for use in air quality models

Commonly Used Emission Models/Processors

For criteria pollutants

EMS95/2000, 2001

SMOKE

EPS2.5

For toxic pollutants

EMS-HAP

SMOKE (upcoming)

EMS-HAP is Part of our Ambient Air Quality Modeling Tools for Toxics

Toxics
Inventory,
precursors,
diesel PM

Emissions
Processor
(EMS-HAP)

Prepares inventories for dispersion model

Dispersion Model (ASPEN)

Annual Average

outdoor concentrations

at census tract level

To
HAPEM
Exposure
Model

User's Guides can be downloaded from www.epa.gov/ttn/scram (See Dispersion Models/Alternative Models/ASPEN)

Functions of EMS-HAP

Data Augmentation is an Optional Emission Processing Function

For national-scale modeling, EMS-HAP assigns source locations and stack parameters if needed

Diagnostics from EMS-HAP's Point Source Location QA

5 - 10

Grouping Metal Compounds for Toxics Modeling

Using HAP table in EMS-HAP:

Partial Listing of Cadmium, Coarse and Cadmium Fine Groups

Name of Species	Description of HAP	Specie Code	React- ivity	(eep	HAP Code	Factor
CADMIUM CHLORIDE	Cadmium Compounds, coarse	10108642	3	Υ	80324	0.1471
CADMIUM SULFATE	Cadmium Compounds, coarse	10124364	3	Υ	80324	0.1294
CADMIUM NITRATE	Cadmium Compounds, coarse	10325947	3	Υ	80324	0.1141
Cadmium & Compounds	Cadmium Compounds, coarse	125	3	Υ	80324	0.2400
Cadmium Oxide	Cadmium Compounds, coars	se 1306190	3	Y	80324	0.2101
CADMIUM SULFIDE	Cadmium Compounds, coarse	1306236	3	Υ	80324	0.1867
Cadmium	Cadmium Compounds, coarse	7440439	3	Υ	80324	0.2400
CADMIUM IODIDE	Cadmium Compounds, coarse	7790809	3	Υ	80324	0.0737
CADMIUM CHLORIDE	Cadmium Compounds, fine	10108642	2	Υ	80124	0.4660
CADMIUM SULFATE	Cadmium Compounds, fine	10124364	2	Υ	80124	0.4098
CADMIUM NITRATE	Cadmium Compounds, fine	10325947	2	Υ	80124	0.3613
Cadmium & Compounds	Cadmium Compounds, fine	125	2	Υ	80124	0.7600
Cadmium Oxide	Cadmium Compounds, fine	1306190	2	Y	80124	0.6652

Speciating Chromium Compounds for Toxics Modeling Needed when specific compound is not reported

EMS-HAP will apply category-specific speciation data:

Potential Approach for Speciating of Chromium Compound Emissions into Hexavalent Chromium

Name of Species Pollcode OldS1 NewS1 OldS2 NewS2 OldS3 NewS3 FAC MACT SCC SIC

Chromium&CompoundsVI 136 80141 59992			80341 59993	.1	9999999
Chromium&CompoundsVI 136 80141 69992		80341 69993	.9	9999999	
Chromium&Compounds Other	136	80141 59992	80341 59993	.2	9999
Chromium &Compounds VI	136	80141 69992	80341 69993	.2	9999
Chromium&Compounds Other	136	80141 59992	80341 59993	.1	1607
Chromium &Compounds VI	136	80141 69992	80341 69993	.9	1607

Speciation data is now needed for the various source categories

Spatial Allocation of Non-point Emissions

Concept: Use surrogates to allocate county level emissions for "non point" source categories.

Example: Use population data to allocate consumer product emissions

Tract 1 gets 10% of consumer product emissions (5/50) for that county based on the population (5) in that tract

Temporal Allocation of Emissions

Typically from annual (inventory) to what model needs

ASPEN ———— Hourly (every day is treated the same)

ISCST3 → Hourly for each day

Day-of-week and seasonal variations

Use temporal profiles or operating data

Example temporal profile for aircraft emissions, for summer weekday

Other Functions of Emissions Processors

Assignment of source groups to emissions

Allows you to apportion the ambient concentrations to individual source groups (e.g., major, area & other, onroad, nonroad)

emission projections

Apply growth and future emission reduction scenarios

Producing model-ready input files

Conclusions

- Inventories needed to managing an air program
- Inventories need to be detailed to support modeling
- Steps to prepare inventories are done automatically by emission processors
- EMS-HAP designed for ASPEN and ISCST3 (ISCST3 functionality to be released next month)